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Abstract
Modern visual-based chatbot building solutions have the aim to simplify the development and deployment of
sophisticated and responsive conversational agents. But such an environment sometimes presents a steep learning
curve when balancing the complexity of available building features with an intuitive UI design. The recent rise
in popularity and availability of LLMs has opened up new possibilities in helping users in their experience by
introducing intent-based copilots in the underlying platform. In this study, we explore the impact of fine-tuning
existing commercial and open-source models to generate the building blocks of a conversational agent. In order
to asses the performance of such copilots, we investigate their accuracy, bias towards popularity and the amount
of hallucinations that a particular generative strategy may exhibit. We report the performance differnces between
purely prompt-based strategies and fine-tuned models. Moreover, we also show that smaller models which require
less hardware resources can exhibit a similar performance when compared to their larger counterparts.
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1. Introduction

Modern visual-based chatbot building solutions, similar to platforms like Dialogflow [1] or Flow XO 1,
aim to make the way chatbots are developed and deployed as simple as possible. They typically offer
a user-friendly interface for designing conversation flows, focus on intents and contexts rather than
linear scripting and allow for more natural and dynamic user interactions. A critical aspect of these
platforms is their ability to manage multiple dialogs. A single chatbot is often composed of numerous
dialogs, each tailored to specific topics or functions. This modular approach allows chatbots to handle a
wide range of user queries and maintain coherent conversations over various subjects, thus enhancing
customer engagement and automating interactions efficiently. A key priority here is to provide an
optimal user experience and as such, it comes only natural that there is a growing trend to provide an
intent-based copilot functionality [2]. The term "copilot" in this sense describes a functionality that
translates a textual user intent into an intent-based prediction which is then transformed into a suitable
format for user interaction [3]. For example, Github’s Copilot X 2 uses the power of Large Language
Models (LLMs) to offer a conversational interface that allows programmers to express their intent in
order to generate or modify code.

Since the introduction of Transformers [4], there has been a rise in the availability of LLMs, both
commercial (e.g., OpenAI [5] or Google [6]) and open-source ones (e.g., Mistral [7]). With such an
increased availability of different models, it becomes much easier to integrate the output of LLMs into
software applications and create copilot functionalities. This has already sparked interest in exploring
the challenges when integrating LLMs with conversational interfaces. For example, [8] have investigated
trust, user experience and different evaluation metrics when building an LLM-based assistant deployed
at Meta. In [9], the authors present a systematic design exploration of user interfaces for AI-driven
code editors. Others [10, 11] look into different tasks like video editing and investigate interfaces for
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Figure 1: Visual chabot building interface at Infobip. One chatbot consists of multiple dialogs with relationships
between themselves (left). A user can define individual visual building elements (right) within a particular dialog
(center) to define the intended behavior.

multiple modalities of input. With respect to building copilots, [3] state that a major pain point lies
in prompt engineering and testing, as these are extremely time-consuming and resource-constrained
tasks. Another issue may also be the need for an adaptive interaction experience as shown by [12]. The
authors reported a user study where participants would often express frustration with the copilot due
to usability issues, particularly when unsolicited suggestions slow down their workflow. As such, in
this work we contribute to the scarce research on utilizing LLMs when creating a copilot functionality
and apply it to the problem of visual chatbot building at Infobip 3. Here we explore the usage of four
different prompting techniques when used with commercial models from OpenAI and Google, as well
as fine-tune four LLMs which vary in different sizes with respect to model parameters. Our results not
only shed light into the trade-off between the accuracy performance and amount of hallucinations, but
also highlight the bias towards popularity which differs between the respective generation strategies.
Finally, we look into the potential effect of position bias when using a generative copilot in the UI and
discuss a model selection approach in contrast to letting the user choose the underlying model.

2. Problem Definition

As seen in Figure 1, a visual chatbot builder at Infobip consists of one or more elements within a dialog.
Each element here represents a building block like a text message to the user, an API call or a condition
that branches the flow, among others. The aim of this paper is thus to investigate how good can we
predict the elements of a given dialog in the presence of a textual input that states the user’s desired
intent of what that particular dialog should be doing. As such, we define 𝑆 = {𝐸1, 𝐸2, . . . , 𝐸𝑁} as the
vocabulary, i.e., the set of all possible visual chatbot-building elements. An element 𝑥 in the list that we
wish the copilot to generate can either be a particular element from 𝑆 or a list of visual elements from
𝑆. Formally, 𝑥 ∈ 𝑆 or 𝑥 ⊆ 𝑆. The latter is needed to encode the ordering of branching elements like a
conditional block that will lead to a different behavior depending on what kind of condition is met. The
entire generated list structure 𝐿 can then be defined as a list of such elements and is represented as
𝐿 = [𝑥1, 𝑥2, . . . , 𝑥𝑛], where each 𝑥𝑖 is either a member of 𝑆 or a subset of 𝑆, and 𝑛 is the length of the
list 𝐿. By setting the copilot prediction problem in such a way, we aim to investigate what LLM-based
generation strategy 𝐺𝑠 is best suited to generate a valid list 𝐿 that can be rendered in the UI and does
actually achieve the desired intent of the dialog. That is, we explore solving 𝐺𝑠(𝑝) = 𝐿, where 𝑝 is a
textual prompt that describes the desired intent of a chatbot’s dialog.

3https://www.infobip.com/answers
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3. Dataset

To evaluate the efficacy of our approach, we utilize a proprietary dataset that consists of 2, 084 English
speaking and actively used chatbots. The dataset was anonymized and cleaned from any sensitive
information which resulted in 59, 429 individual dialogs. Overall, there are 25 different visual building
elements that serve their purpose in building the sequential flow of how the chatbot should behave (e.g.,
sending a text message, calling an API, etc.). The maximum number of visual chatbot building elements
a dialog in our dataset has is 15 and on average there are 5.81 elements in a dialog. Interestingly enough,
we found that while building chatbots with visual elements there are some building blocks which occur
quite frequently. For example, the element which is directing the flow of the chatbot from one dialog to
another accounts for 38% of all element occurrences within the dialogs which suggests that there is an
inherent bias towards popularity in the data. For each dialog we have a textual description or rather the
input prompt about its intent as described in the previous section. This textual prompt, for example, is
in the form of "A dialog that helps users check the working hours and directs them to a call center or
waits for an agent to contact them", "End a customer’s session and ask for a feedback survey" or "Check
current account balance via WhatsApp". On average, an input prompt contains about 22 words, where
the longest dialog intent description had 57 words and the shortest consisted of 6 words.

4. Experimental Setup

As already mentioned, the aim of our work is to investigate how good can generative models create
a dialog flow when given an input textual prompt which describes the intent of the dialog. To do so,
we first experiment with four different prompting strategies using commercially available APIs from
OpenAI [5] and Google [6] as using pre-trained models in such a way has become a de-facto standard
for many software solutions that aim to integrate the generative capability of LLMs. Secondly, we also
look into fine-tuning four LLMs that vary in different sizes using our own data. Due to the limited
availability of hardware resources we had for fine-tuning existing LLMs, we split the dataset randomly
into a train, validation and test set instead of using a 𝑘-fold cross-validation. That is, we sampled 20%
or rather 11, 886 dialogs to be used as the test set. For the remainder we also employed a 80/20 split
which resulted in a train set of 38, 034 dialogs and a validation set of 9, 509 dialogs. For all experiments,
we investigate the temperature setting for a more deterministic output of the generative model (i.e., a
temperature of 0.0) as well as a more exploratory one (i.e., a temperature of 0.7).

4.1. Prompt Baselines

A combination of tuning-free prompting and prompt augmentation (i.e., in-context learning) is nowadays
a common approach for generative models as it can produce efficient results without the need of
updating parameters in the underlying LLM [13]. As such, we investigate different in-context learning
prompting strategies on OpenAI’s GPT-3.5 Turbo [5] and Google’s Gemini 1.0 Pro [6] models 4. We first
explore zero-shot prompting with only a natural language description of the task at hand. This is then
extended by a few-shot prompting strategy, where additional demonstrations of the task are given as
conditioning at inference time [14]. Here we also investigate two levels of granularity when providing
task demonstrations with just examples of the input and output as well as additional rules. Finally. we
investigate Chain-of-Thought [15], a prompting strategy that improves the ability to perform complex
reasoning through intermediate reasoning steps. Summed up, in our experiments we make use of the
following four prompt strategies:

Prompt strategy #1: Zero-Shot. For a zero-shot setting we define a prompt that describes the problem
of building a chatbot dialog as well as states the vocabulary of the available 25 visual elements. The
model was further instructed to produce the expected array 𝐿 of elements from the vocabulary based
on the added textual dialog intent (i.e., task from the test set).

4These were the two commercially available LLMs that were most popular at the time of conducting the experiments.



Prompt strategy #2: Few-Shot Example. We extend the zero-shot prompt by adding three different
examples of input task descriptions and their expected output.

Prompt strategy #3: Few-Shot Rule. In addition to providing few examples of a valid input and
output in the prompt, we add the information about specific rules that need to be enforced in order
to render the generated prediction in the UI. These rules are highly domain-specific and contain, for
example, a restriction where some elements can’t have multiple instances within a single dialog. Certain
elements are also mutually exclusive and cannot coexist in the same dialog. Additionally, some elements
function as branching points, and their subsequent branches are limited in size. Overall, we include 7
different rule examples which need to be ensured for a proper rendering of dialog elements.

Prompt strategy #4: Chain-of-Thought (CoT). Finally, we utilize a more robust technique that is
designed to enhance the reasoning ability of an LLM by instructing it to generate a series of intermediate
steps that lead to the final answer. These intermediate steps, known as the chain of thought, have
been shown to significantly improve the model’s ability to perform complex reasoning [16, 17]. The
effectiveness of CoT is particularly effective with larger and more powerful language models, as it is
an emergent property of model scale [15]. As CoT prompting has proven effective in improving the
performance of LLMs across various reasoning tasks, we extend the previous prompting strategy with
5 reasoning steps to (1) understand the input, (2) identify the main actions, (3) select and sequence
the appropriate visual elements, (4) create branching logic if needed, and (5) ensure that the dialog
sequence ends properly. For the three input and output examples, a rationale (i.e., explanation of the
reasoning steps) has been added.

4.2. Fine-Tuned Models

To find out how good we can model the domain specific knowledge of building chatbots using visual
elements, we fine-tune existing LLM solutions using our own data. Here we investigate four different
LLMs which range from a large parameter size to a much smaller size that is better suited for commodity
hardware. The largest model is the commercially available GPT-3.5 Turbo for which we use Microsoft’s
API 5 to fine-tune a custom model. For the open-source ones, we apply Low Rank Approximation
(LoRA) [18] which introduces a pair of rank decomposition matrices that are trained simultaneously
while keeping the existing weight matrices fixed. As the number of trainable parameters is determined
by the rank 𝑟, we set it to 4 as such a number was shown to be sufficient [18]. Overall, we experiment
with the following four LLMs that we fine-tuned using our training dataset:

GPT-3.5 Turbo (large) [5] is the largest model in our experiments. The exact model size is not publicly
known but its predecessor GPT-3 [14] is reported to have 175B parameters (i.e., about 10 times more
than GPT-2). Although there are some estimates in the community that GPT-3.5 Turbo is much smaller
in size when compared to GPT-3, it is by far still the largest model in our experiments. We opted for
fine-tuning this model due to its reported size as well as popularity in both the academia and industry.

Mistral-7B (mid) [7] is a recently popularized 7B parameter language model as it exhibited a better
performance than LLaMa2-13B across multiple benchmarks as well as outperformed the original
LLaMa-34B model in areas like reasoning, mathematics, and code generation. It employs grouped-
query attention to accelerate inference speed and reduce memory requirements during decoding.
Additionally, sliding window attention is employed to handle longer sequences more effectively at a
reduced computational cost.

LLaMa-3B [19] (small) utilizes a modified transformer architecture for enhanced performance and
is designed for efficient memory and runtime usage. The training data, drawn from sources like
CommonCrawl, GitHub, and Wikipedia, is processed with byte-pair encoding to ensure quality and
variety. LLaMA-3B has become a popular choice for a smaller model as it demonstrate competitive
performance across various tasks, including zero-shot and few-shot challenges. We opted out for the

5https://learn.microsoft.com/en-us/azure/ai-services/openai/tutorials/fine-tune
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original version of the smaller LLaMa model as it requires less hardware resources (e.g., when only
commodity GPUs with a small VRAM size are available). Furthermore, we were interested in the
performance when we have a 2k context length restriction.

Sheared-LLaMa-1.3B [20] (tiny) is constructed by successfully pruning LLaMA2-7B [21] down to
1.3B parameters, while outperforming equivalent-sized models in various downstream tasks. This is
done by using two key techniques: targeted structured pruning, which reshapes a larger model by
pruning layers, heads, and dimensions, as well as dynamic batch loading, which adjusts training batch
composition based on varying losses across different domains. Having such a tiny LLM be able to
perform reasonably well for the task of generating dialog elements would lead to the least expensive
option for running and scaling the copilot functionality when needed.

Inference Considerations. We fine-tuned the open-source LLMs on a GPU server with a NVIDIA
Tesla V100 (16 GB VRAM). For inference, we used Huggingface’s text generation API 6, compatible
with LLaMa-3B and Sheared-LLaMa-1.3B. However, running Mistral-7B on NVIDIA’s Volta architecture
required the use of llama.cpp 7. Mistral-7B needed 13.6 GB of VRAM, compared to 9.5 GB for LLaMa-3B
and 5.1 GB for Sheared-LLaMa-1.3B.

4.3. Metrics

To asses the performance of our four prompting strategies on GPT-3.5 Turbo and Gemini 1.0 Pro as
well as the four fine-tuned LLMs, we measure both the prediction accuracy as well introduce a score to
measure the amount of hallucinations that a respective model generates.

nDCG is a ranking-dependent metric that measures how many visual elements within the chatbot
builder are generated correctly. It also takes the position of the elements in the predictions into account
where it favors more when the correct elements are generated at the beginning. It is calculated by
dividing the discontinued cumulative gain (DCG) of the predicted list of elements with the ideal DCG
value, which is the highest possible DCG value that can be achieved if all the relevant elements would
be generated in the correct order [22]. In our case, having a high nDCG is favourable for ensuring a
better user experience. For example, if the model has generated a valid sequence of visual elements at
the beginning but hallucinated at the end, we may want to render at least the first part of the generated
sequence in the UI instead of showing an empty dialog.

Recall is calculated as the number of correctly generated visual elements divided by the number of
relevant elements in the respective test case. Optimizing for a higher recall would mean that we aim to
better encapsulate the desired intent which was stated in the input prompt.

HitRate is measured as 1 when the list 𝐿 of generated visual elements matches by 100% the list of
elements which is expected, else it is 0. That is, we are interested to uncover how good can the generative
models fully reproduce the expected behaviour of the chatbot dialog.

Hallucination Score is based on the presence or absence of wrongly generated responses (i.e., halluci-
nations). It is assigned a value of 1 if there are no hallucinations, otherwise, it is 0. A hallucination in
this context is identified when any of the following three validations are violated: (1) format validation,
(2) vocabulary validation and, (3) rule validation. The format validation requires that the generated
text is a parsable list as defined in Section 2 without any additional free-form text in it. The vocabulary
validation ensures that only the available chatbot elements defined in the vocabulary of the training
set are generated and no other generalization is happening. Lastly, the rule validation checks that the
visual elements adhere to the predefined set of domain-specific rules regarding placement and user
interface rendering as described in the third prompting strategy of the previous Section 4.1 (i.e., the
Few-Shot Rule prompting strategy).

6https://github.com/huggingface/text-generation-inference
7https://github.com/ggerganov/llama.cpp
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nDCG ↑ Recall ↑ HitRate ↑ Hallucination Score ↓
Temperature = 0.0

GPT-3.5 Turbo

Zero-Shot 0.5154 0.3085 1.31% 30.67%
Few-Shot Example 0.6402 0.3448 2.13% 20.22%
Few-Shot Rule 0.6201 0.3901 0.68% 23.57%
CoT 0.6412 0.3242 3.60% 8.68%

Gemini 1.0 Pro

Zero-Shot 0.6073 0.3686 5.89% 91.85%
Few-Shot Example 0.7570 0.3469 4.88% 54.47%
Few-Shot Rule 0.7993 0.3682 1.93% 83.85%
Chain-of-Thought 0.7416 0.3675 5.35% 8.38%

Temperature = 0.7

GPT-3.5 Turbo

Zero-Shot 0.5085 0.3131 2.09% 46.44%
Few-Shot Example 0.6228 0.3398 1.75% 12.63%
Few-Shot Rule 0.5940 0.3885 0.69% 25.70%
CoT 0.6459 0.3196 3.68% 9.17%

Gemini 1.0 Pro

Zero-Shot 0.6271 0.3547 5.00% 92.60%
Few-Shot Example 0.7607 0.3316 3.84% 64.73%
Few-Shot Rule 0.7725 0.3563 1.84% 91.77%
CoT 0.7292 0.3638 5.41% 9.06%

Table 1
Accuracy and hallucination performance of the four prompt baseline strategies with temperature settings
of 0.0 and 0.7 using the commercially available API for OpenAI’s GPT-3.5 Turbo and Google’s Gemini
1.0 Pro. Bold numbers indicate the highest performing model of a particular metric and temperature.

5. Accuracy Performance

The accuracy performance with respect to nDCG, Recall and HitRate for the prompt baseline strategies
can be seen in Table 1 and for the fine-tuned LLMs in Table 2.

Prompt Baselines. When comparing GPT-3.5 Turbo and Gemini 1.0 Pro, an interesting observation
can be seen across both temperature settings. Namely, with respect to nDCG and HitRate, Gemini 1.0
Pro produces more accurate predictions when comparing the individual prompting strategies between
themselves. In the case of Few-Shot prompting, however, GPT-3.5 Turbo did manage to achieve the
best Recall. When looking at the individual prompting strategies, a Few-Shot prompting strategy can
result in a better accuracy than employing a Zero-Shot one. However, adding rules to be enforced in
the Few-Shot prompting strategy did negatively impact the HitRate. But interestingly enough, this
effect can be countered by applying Chain-of-Thought. Using a CoT strategy on GPT-3.5 Turbo has
consistently resulted in the best performance with respect to HitRate and nDCG. When applied to
Gemini 1.0 Pro it also showed comparable results (i.e., even having the overall best HitRate of 5.41% for
the temperature setting of 0.7), clearly indicating it to be a robust prompting technique when applied
for the task of predicting the sequence of elements for visual chatbot-building solutions.

Fine-Tuned Models. One of the goals of our investigation was to find out how much can we improve
the accuracy performance when we fine-tune LLMs by applying the LoRA on our data. As seen in Table
2, the fine-tuned LLMs outperform the prompt baseline strategies with respect to all three accuracy
metrics. Mistral-7B had the most notable HitRate of 26.96%, while the fine-tuned version of GPT-3.5
Turbo had the best overall Recall of 0.4327. Interestingly enough, Sheared-LLaMa-1.3B which was the
smallest fine-tuned model in our experiments achieved the best nDCG score of 0.8920. Moreover, we
found that decreasing temperature, the randomness controlling hyperparameter, from 0.7 to 0.0 mostly
increased the accuracy performance in all models and baselines except in GPT-3.5 Turbo and Mistral-7B.

6. Reduction of Hallucinations

The biggest downside when utilizing prompting strategies is shown in Table 1 with the Hallucination
Score. Ideally, we are interested to see a number that is close to 0 as possible. A high hallucination score
indicates a poor user experience when applying the copilot in the UI as it often prevents the generated
dialogs from being rendered, which in turn can cause frustrations to the end-user as reported by [12].



nDCG ↑ Recall ↑ HitRate ↑ Hallucination Score ↓
Temperature = 0.0

GPT-3.5 Turbo (large) 0.8903 0.4327 15.78% 1.96%
Mistral-7B (mid) 0.8848 0.4275 26.72% 15.34%
LLaMa-3B (small) 0.8859 0.4248 18.89% 0.19%

Sheared-LLaMa-1.3B (tiny) 0.8920 0.3948 18.01% 0.04%
Temperature = 0.7

GPT-3.5 Turbo (large) 0.8903 0.4327 15.78% 1.88%
Mistral-7B (mid) 0.8854 0.4276 26.96% 15.16%
LLaMa-3B (small) 0.8515 0.4112 16.77% 0.66%

Sheared-LLaMa-1.3B (tiny) 0.8543 0.3776 14.56% 0.12%

Table 2
Accuracy and hallucination performance of the fine-tuned large, mid, small and tiny LLM with tempera-
ture settings of 0.0 and 0.7. The bold numbers indicate the highest performing model of a particular
metric and temperature setting.

Prompt Baselines. A notable difference can be seen between GPT-3.5 Turbo and Gemini 1.0 Pro when
we compare them using the Zero-Shot and Few-Shot prompting strategies. Altough, Gemini 1.0 Pro
exhibited a much better accuracy performance as reported in the previous Section 5, it produced a
significantly higher number of hallucinations. This is especially the case for a Zero-Shot strategies
where it hallucinated over 90% of the time. Although the performance with respect to hallucinations
seems to fluctuate quite a lot between the individual prompting strategies, applying Chain-of-Thought in
our case does lead to a more robust and consistent performance between the two utilized commercially
available LLMs. To be concrete, applying a CoT strategy resulted in the lowest hallucination score out
of all prompt baselines with 8.38%.

Fine-Tuned Models. By looking at the amount of hallucinations, we can see the biggest value of
fine-tuning LLMs in the context of building an intent-based copilot for visual chatbot builders. Most
of the hallucinations in all LLMs included the generation of visual element types that do not exist
in our application domain or are a result of invalid textual formatting of valid visual element types.
The latter, for instance, includes lowercasing characters that should have been in uppercase or not
following the expected structure as defined in Section 2. To our surprise, Mistral-7B, which was the
best performing model with respect to HitRate, resulted in a lot more hallucinations when compared
to other fine-tuned LLMs, which is not favorable when needing to provide a copilot functionality in
a real setting. Actually, it hallucinated significantly more than the CoT prompt strategies that were
run on both GPT-3.5 Turbo and Gemini 1.0 Pro. Upon analyzing the responses of Mistral-7B, we have
discovered that the biggest problem was in generating a response in the expected textual format, often
resulting with empty outputs containing no visual elements that could be rendered.

The most notable finding however was the performance of the smaller Sheared-LLaMa-1.3B model.
It was not only the smallest fine-tuned LLM that we employed, but also resulted in the best overall
performance with respect to hallucinations. In both temperature settings it achieved the lowest amount
hallucinations and managed to reach a score of 0.04% hallucinations overall. This is especially interest-
ing when we consider that it achieved a comparable accuracy performance to other fine-tuned models
while being a cost effective solution that can be efficiently run on commodity hardware.

7. Bias Analysis

In order to further uncover the effects of intent-based copilots in the context of visual-based chatbot
building, we also explore the amount of bias towards popularity as well as explore the effect of position
bias when giving users the choice of specifying which model should be used.

Impact of Popularity Bias. Having a bias towards popularity [23] is known to lead to a lack of
diversity in generated content and, in our case, potentially cause an unfair exposure for less popular
visual elements. By assessing and mitigating this kind of bias, we are fostering a more diverse and
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Figure 2: Popularity bias of prompting baselines on GPT-3.5 Turbo (left), Gemini 1.0 Pro (center) and
fine-tuned models (right) when compared to the ground truth data from the test set (black line).

personalized copilot functionality. As such, in Figure 2 we quantify the extent to which the LLM-based
element generations deviate from the established ground truth of the popularity like in [24].

In our experiments, only 20 from the available 25 visual elements were part of the test set. It can
also be seen that there is one element which is by far the most popular one and accounts for 38% of all
element occurrences within the dialogs. By utilizing only prompting techniques without any fine-tuning
we end up with a generated list of elements that is less biased towards popularity. In addition to that,
we can see that other visual elements, which were not available in the test set, also got the chance to be
generated and rendered in the UI. Out of all evaluated approaches, the Zero-Shot prompt strategy had
the lowest bias towards popularity for both GPT-3.5 Turbo and Gemini 1.0 Pro. Interestingly enough,
by using Gemini 1.0 Pro we end up with generated dialogs which favor much more the popular visual
elements from the test set. Out of the three strategies that included examples of a valid input and output
in the prompt, the CoT technique not only achieved a better performance with respect to accuracy
and hallucinations but also manages to be less prone to popularity bias when compared to the other
two Few-Shot strategies. By fine-tuning LLMs with our training data we end up with a similar bias
towards popularity when compared to the ground truth dialog elements from the test set. Moreover,
the fine-tuned models cover only 17 of the available 25 dialog elements. Interestingly enough, the
fine-tuned version of GPT-3.5 Turbo can be seen to exhibit a much higher bias to popularity as the most
popular element accounts for 55% of the occurrences in all generated lists of elements.

Position Bias on Model Selection. To assess the usability of the fine-tuned models in a copilot
setting, we also conducted a small qualitative analysis with 20 internal participants (i.e., expert users
that were familiar with the platform) who generated 200 new chatbot dialogs. The participants could
access the chatbot building platform and create a new dialog as seen in Figure 3 by submitting the
desired textual input. Additionally, the participants were instructed that they had the option to specify
from a drop-down list the underlying fine-tuned model to be used as well as choose between the two
temperature settings (i.e., a standard mode with a temperature of 0.0 and a creative one with 0.7). This
small-scale analysis already revealed a possible effect of position bias [25], where the position of the
utilized model or hyperparameter has substantial influence on the users’ decision to use it. That is,
although the participants could pick the underlying LLM from a drop-down list, almost 90% of the time
the participants left the fine-tuned GPT-3.5 Turbo, which was displayed as default first in the list, to be
used. A similar observation can be made for the choice of temperature as 87% of the time, the choice
was left to the pre-selected temperature of 0.0. If an error happened (i.e., the model hallucinated), the
participants would rather repeat the same query or rephrase it, instead of changing the underlying LLM.
This suggests that the burden of choice should be alleviated and an additional online model selection
algorithm should be employed like the recently proposed time-increasing bandit algorithm from [26].

8. Conclusion

In this study, we explored the utilization of Large Language Models (LLMs) as intent-based copilots in
modern visual-based chatbot building platforms. We demonstrated that fine-tuned LLMs outperform



Figure 3: Visual interface (pop-up) used in our small-scale qualitative analysis that calls fine-tuned LLMs to
generate a dialog based on the provided input text.

traditional prompt-based strategies with respect to accuracy and hallucinations. Interestingly enough,
we found that a relatively tiny fine-tuned LLM can exhibit a comparable accuracy performance to
the much larger GPT-3.5 Turbo while producing the least amount of hallucinations. Additionally, our
research highlighted that more sophisticated prompting techniques like Chain-of-Thought not only
improve the accuracy and lower the amount of hallucinations in a copilot setting, but can also lead to a
lower bias toward popularity.

Limitations and Future Work. A limitation of our work is that we use a proprietary dataset for
our experiments. We are aware that this does not foster reproducibility and plan in future work to
open-source an anonymized dataset as these are yet to be prevalent in the research community for the
task of creating copilots for visual chatbot generation. In addition, the research on LLMs is gaining
a lot of traction and new models are being released with an increased frequency. Newer commercial
models such as GPT-4o and Gemini 1.5 Pro have replaced their older variants and offer an improved
performance. Although our study reports on models that were state-of-the-art at the time of research,
we plan to continue our work by assessing newer and more sophisticated comercial and open-source
model versions, but also look into sparsity techniques to reduce the number of active parameters in
LLMs without ending up with a substantial loss in performance. Finally, we plan to conduct a longer
online study to investigate the user experience and acceptance of intent-based copilots as well as explore
the impact of different bandit techniques for forming an effective model selection.

References

[1] N. Sabharwal, A. Agrawal, N. Sabharwal, A. Agrawal, Introduction to google dialogflow, Cognitive
virtual assistants using google dialogflow: develop complex cognitive bots using the google
dialogflow platform (2020) 13–54.

[2] C. Bird, D. Ford, T. Zimmermann, N. Forsgren, E. Kalliamvakou, T. Lowdermilk, I. Gazit, Taking
flight with copilot: Early insights and opportunities of ai-powered pair-programming tools, Queue
20 (2022) 35–57.

[3] C. Parnin, G. Soares, R. Pandita, S. Gulwani, J. Rich, A. Z. Henley, Building your own product
copilot: Challenges, opportunities, and needs, arXiv preprint arXiv:2312.14231 (2023).

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin,
Attention is all you need, Advances in Neural Information Processing Systems 30 (2017).



[5] R. OpenAI, Gpt-4 technical report. arxiv 2303.08774, View in Article 2 (2023).
[6] G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M.

Dai, A. Hauth, et al., Gemini: a family of highly capable multimodal models, arXiv preprint
arXiv:2312.11805 (2023).

[7] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, et al., Mistral 7b, arXiv preprint arXiv:2310.06825 (2023).

[8] V. Murali, C. Maddila, I. Ahmad, M. Bolin, D. Cheng, N. Ghorbani, R. Fernandez, N. Nagappan,
Codecompose: A large-scale industrial deployment of ai-assisted code authoring, arXiv preprint
arXiv:2305.12050 (2023).

[9] P. Vaithilingam, E. L. Glassman, P. Groenwegen, S. Gulwani, A. Z. Henley, R. Malpani, D. Pugh,
A. Radhakrishna, G. Soares, J. Wang, et al., Towards more effective ai-assisted programming: A
systematic design exploration to improve visual studio intelli-code’s user experience, in: Proc. of
ICSE-SEIP’23, 2023.

[10] B. Tilekbay, S. Yang, M. A. Lewkowicz, A. Suryapranata, J. Kim, Expressedit: Video editing with
natural language and sketching, in: Proc. of ACM IUI’24, 2024.

[11] B. Wang, Y. Li, Z. Lv, H. Xia, Y. Xu, R. Sodhi, Lave: Llm-powered agent assistance and language
augmentation for video editing, in: Proc. of IUI’24, 2024.

[12] J. Prather, B. N. Reeves, P. Denny, B. A. Becker, J. Leinonen, A. Luxton-Reilly, G. Powell, J. Finnie-
Ansley, E. A. Santos, “it’s weird that it knows what i want”: Usability and interactions with copilot
for novice programmers, ACM Transactions on Computer-Human Interaction 31 (2023) 1–31.

[13] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, G. Neubig, Pre-train, prompt, and predict: A systematic
survey of prompting methods in natural language processing, ACM Computing Surveys 55 (2023).

[14] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al., Language models are few-shot learners, Advances in neural information
processing systems 33 (2020) 1877–1901.

[15] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. V. Le, D. Zhou, Chain-of-
thought prompting elicits reasoning in large language models, Advances in NeurIPS (2022).

[16] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani, S. Brahma,
et al., Scaling instruction-finetuned language models, Journal of ML Research (2024).

[17] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, Y. Iwasawa, Large language models are zero-shot reasoners,
Advances in neural information processing systems 35 (2022) 22199–22213.

[18] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, Lora: Low-rank
adaptation of large language models, In Proceedings of ICLR’22 (2022).

[19] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al., Llama: Open and efficient foundation language models, arXiv preprint
arXiv:2302.13971 (2023).

[20] M. Xia, T. Gao, Z. Zeng, D. Chen, Sheared llama: Accelerating language model pre-training via
structured pruning, in: Proc. of ICLR’24, 2024.

[21] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhar-
gava, S. Bhosale, et al., Llama 2: Open foundation and fine-tuned chat models, arXiv preprint
arXiv:2307.09288 (2023).

[22] K. Järvelin, S. L. Price, L. M. Delcambre, M. L. Nielsen, Discounted cumulated gain based evaluation
of multiple-query ir sessions, in: Proceedings of ECIR’2008, Springer, Springer, 2008, pp. 4–15.

[23] G. L. Ciampaglia, A. Nematzadeh, F. Menczer, A. Flammini, How algorithmic popularity bias
hinders or promotes quality, Scientific reports 8 (2018) 15951.

[24] H. Abdollahpouri, M. Mansoury, R. Burke, B. Mobasher, E. Malthouse, User-centered evaluation
of popularity bias in recommender systems, in: Proc. of ACM UMAP’21, 2021.

[25] T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, G. Gay, Evaluating the accuracy of
implicit feedback from clicks and query reformulations in web search, ACM TOIS’07 25 (2007).

[26] Y. Xia, F. Kong, T. Yu, L. Guo, R. A. Rossi, S. Kim, S. Li, Which llm to play? convergence-aware
online model selection with time-increasing bandits, in: Proc. of ACM Web Conference, 2024.


	1 Introduction
	2 Problem Definition
	3 Dataset
	4 Experimental Setup
	4.1 Prompt Baselines
	4.2 Fine-Tuned Models
	4.3 Metrics

	5 Accuracy Performance
	6 Reduction of Hallucinations
	7 Bias Analysis
	8 Conclusion

